Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Eur J Epidemiol ; 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2297178

ABSTRACT

While some studies have previously estimated lives saved by COVID-19 vaccination, we estimate how many deaths could have been averted by vaccination in the US but were not because of a failure to vaccinate. We used a simple method based on a nationally representative dataset to estimate the preventable deaths among unvaccinated individuals in the US from May 30, 2021 to September 3, 2022 adjusted for the effects of age and time. We estimated that at least 232,000 deaths could have been prevented among unvaccinated adults during the 15 months had they been vaccinated with at least a primary series. While uncertainties exist regarding the exact number of preventable deaths and more granular data are needed on other factors causing differences in death rates between the vaccinated and unvaccinated groups to inform these estimates, this method is a rapid assessment on vaccine-preventable deaths due to SARS-CoV-2 that has crucial public health implications. The same rapid method can be used for future public health emergencies.

2.
PLOS global public health ; 2(12), 2022.
Article in English | EuropePMC | ID: covidwho-2265124

ABSTRACT

The COVID-19 pandemic has had intense, heterogeneous impacts on different communities and geographies in the United States. We explore county-level associations between COVID-19 attributed deaths and social, demographic, vulnerability, and political variables to develop a better understanding of the evolving roles these variables have played in relation to mortality. We focus on the role of political variables, as captured by support for either the Republican or Democratic presidential candidates in the 2020 elections and the stringency of state-wide governor mandates, during three non-overlapping time periods between February 2020 and February 2021. We find that during the first three months of the pandemic, Democratic-leaning and internationally-connected urban counties were affected. During subsequent months (between May and September 2020), Republican counties with high percentages of Hispanic and Black populations were most hardly hit. In the third time period –between October 2020 and February 2021– we find that Republican-leaning counties with loose mask mandates experienced up to 3 times higher death rates than Democratic-leaning counties, even after controlling for multiple social vulnerability factors. Some of these deaths could perhaps have been avoided given that the effectiveness of non-pharmaceutical interventions in preventing uncontrolled disease transmission, such as social distancing and wearing masks indoors, had been well-established at this point in time.

3.
Clin Microbiol Rev ; : e0009222, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2258185

ABSTRACT

Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.

4.
Clin Infect Dis ; 2022 May 25.
Article in English | MEDLINE | ID: covidwho-2234374

ABSTRACT

BACKGROUND: The Omicron variant of SARS-CoV-2 is highly transmissible in vaccinated and unvaccinated populations. The dynamics governing its establishment and propensity towards fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. In this work, we describe the dynamics of Omicron at three institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction to three IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region, and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2-3 day delay. Finally, we compare cycle threshold (Ct) values in Omicron vs. Delta variant cases on college campuses, and identify lower viral loads among college affiliates harboring Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.

5.
PLOS Glob Public Health ; 2(12): e0000557, 2022.
Article in English | MEDLINE | ID: covidwho-2196818

ABSTRACT

The COVID-19 pandemic has had intense, heterogeneous impacts on different communities and geographies in the United States. We explore county-level associations between COVID-19 attributed deaths and social, demographic, vulnerability, and political variables to develop a better understanding of the evolving roles these variables have played in relation to mortality. We focus on the role of political variables, as captured by support for either the Republican or Democratic presidential candidates in the 2020 elections and the stringency of state-wide governor mandates, during three non-overlapping time periods between February 2020 and February 2021. We find that during the first three months of the pandemic, Democratic-leaning and internationally-connected urban counties were affected. During subsequent months (between May and September 2020), Republican counties with high percentages of Hispanic and Black populations were most hardly hit. In the third time period -between October 2020 and February 2021- we find that Republican-leaning counties with loose mask mandates experienced up to 3 times higher death rates than Democratic-leaning counties, even after controlling for multiple social vulnerability factors. Some of these deaths could perhaps have been avoided given that the effectiveness of non-pharmaceutical interventions in preventing uncontrolled disease transmission, such as social distancing and wearing masks indoors, had been well-established at this point in time.

6.
Lancet Reg Health Am ; 16: 100384, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2181270

ABSTRACT

Background: Scant research, including in the United States, has quantified relationships between the political ideologies of elected representatives and COVID-19 outcomes among their constituents. Methods: We analyzed observational cross-sectional data on COVID-19 mortality rates (age-standardized) and stress on hospital intensive care unit (ICU) capacity for all 435 US Congressional Districts (CDs) in a period of adult vaccine availability (April 2021-March 2022). Political metrics comprised: (1) ideological scores based on each US Representative's and Senator's concurrent overall voting record and their specific COVID-19 votes, and (2) state trifectas (Governor, State House, and State Senate under the same political party control). Analyses controlled for CD social metrics, population density, vaccination rates, the prevalence of diabetes and obesity, and voter political lean. Findings: During the study period, the higher the exposure to conservatism across several political metrics, the higher the COVID-19 age-standardized mortality rates, even after taking into account the CD's social characteristics; similar patterns occurred for stress on hospital ICU capacity for Republican trifectas and US Senator political ideology scores. For example, in models mutually adjusting for CD political and social metrics and vaccination rates, Republican trifecta and conservative voter political lean independently remained significantly associated with an 11%-26% higher COVID-19 mortality rate. Interpretation: Associations between the political ideologies of US federal elected officials and state concentrations of political party power with population health warrant greater consideration in public health analyses and monitoring dashboards. Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

7.
iScience ; 25(11): 105337, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2122548

ABSTRACT

Contact tracing and genomic data, approaches often used separately, have both been important tools in understanding the nature of SARS-CoV-2 transmission. Linked analysis of contact tracing and sequence relatedness of SARS-CoV-2 genomes from a regularly sampled university environment were used to build a multilevel transmission tracing and confirmation system to monitor and understand transmission on campus. Our investigation of an 18-person cluster stemming from an athletic team highlighted the importance of linking contact tracing and genomic analysis. Through these findings, it is suggestive that certain safety protocols in the athletic practice setting reduced transmission. The linking of traditional contact tracing with rapid-return genomic information is an effective approach for differentiating between multiple plausible transmission scenarios and informing subsequent public health protocols to limit disease spread in a university environment.

8.
J Infect Dis ; 226(10): 1704-1711, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2117943

ABSTRACT

BACKGROUND: Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. METHODS: We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. RESULTS: Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. CONCLUSIONS: We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics/prevention & control , COVID-19/epidemiology , Infection Control , Health Personnel , Hospitals
9.
Genome Biol ; 23(1): 236, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108879

ABSTRACT

Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , RNA, Viral/genetics , Transcriptome
10.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2058577

ABSTRACT

Contact tracing and genomic data, approaches often used separately, have both been important tools in understanding the nature of SARS-CoV-2 transmission. Linked analysis of contact tracing and sequence relatedness of SARS-CoV-2 genomes from a regularly sampled university environment were used to build a multilevel transmission tracing and confirmation system to monitor and understand transmission on campus. Our investigation of an 18-person cluster stemming from an athletic team highlighted the importance of linking contact tracing and genomic analysis. Through these findings, it is suggestive that certain safety protocols in the athletic practice setting reduced transmission. The linking of traditional contact tracing with rapid-return genomic information is an effective approach for differentiating between multiple plausible transmission scenarios and informing subsequent public health protocols to limit disease spread in a university environment. Graphical

11.
Patterns (N Y) ; 3(8): 100572, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2015904

ABSTRACT

An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate participants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiological dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual pathogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings, OO collects anonymized spatiotemporal data, including the time and duration of the contacts among participants of the simulation. We report the distribution, timing, duration, and connectedness of student social contacts at two university deployments and uncover cryptic transmission pathways through individuals' second-degree contacts. We then construct epidemiological models based on the OO-generated contact networks to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers. Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proactively and strategically testing and/or vaccinating individuals based on individual social interaction levels.

12.
JAMA Netw Open ; 5(5): e2214171, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1864298

ABSTRACT

Importance: In emergency epidemic and pandemic settings, public health agencies need to be able to measure the population-level attack rate, defined as the total percentage of the population infected thus far. During vaccination campaigns in such settings, public health agencies need to be able to assess how much the vaccination campaign is contributing to population immunity; specifically, the proportion of vaccines being administered to individuals who are already seropositive must be estimated. Objective: To estimate population-level immunity to SARS-CoV-2 through May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Design, Setting, and Participants: This observational case series assessed cases, hospitalizations, intensive care unit occupancy, ventilator occupancy, and deaths from March 1, 2020, to May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Data were analyzed from July 2021 to November 2021. Exposures: COVID-19-positive test result reported to state department of health. Main Outcomes and Measures: The main outcomes were statistical estimates, from a bayesian inference framework, of the percentage of individuals as of May 31, 2021, who were (1) previously infected and vaccinated, (2) previously uninfected and vaccinated, and (3) previously infected but not vaccinated. Results: At the state level, there were a total of 1 160 435 confirmed COVID-19 cases in Rhode Island, Massachusetts, and Connecticut. The median age among individuals with confirmed COVID-19 was 38 years. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in these states was less than 15%, setting the stage for a large epidemic wave during winter 2020 to 2021. Population immunity estimates for May 31, 2021, were 73.4% (95% credible interval [CrI], 72.9%-74.1%) for Rhode Island, 64.1% (95% CrI, 64.0%-64.4%) for Connecticut, and 66.3% (95% CrI, 65.9%-66.9%) for Massachusetts, indicating that more than 33% of residents in these states were fully susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned owing to an estimated 34.1% (95% CrI, 32.9%-35.2%) of vaccines in Rhode Island, 24.6% (95% CrI, 24.3%-25.1%) of vaccines in Connecticut, and 27.6% (95% CrI, 26.8%-28.6%) of vaccines in Massachusetts being distributed to individuals who were already seropositive. Conclusions and Relevance: These findings suggest that future emergency-setting vaccination planning may have to prioritize high vaccine coverage over optimized vaccine distribution to ensure that sufficient levels of population immunity are reached during the course of an ongoing epidemic or pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Bayes Theorem , COVID-19/epidemiology , COVID-19 Vaccines/therapeutic use , Humans , Incidence , New England
14.
Commun Biol ; 5(1): 439, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1839575

ABSTRACT

SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Pandemics , SARS-CoV-2/genetics , United States/epidemiology
17.
Water Res ; 212: 118070, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1621092

ABSTRACT

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. 24-hour composite wastewater samples were collected from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and SARS-CoV-2 RNA concentrations were measured using RT-qPCR. The relationship between wastewater copy numbers of SARS-CoV-2 gene fragments and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater copy numbers of SARS-CoV-2 gene fragments and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. The WC ratio increases after key events, providing insight into the balance between disease spread and public health response. Time lag and transfer function analysis showed that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity, which allows for more timely case detection and reporting. These three metrics could help further integrate wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.


Subject(s)
COVID-19 , Pandemics , Benchmarking , Humans , RNA, Viral , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
18.
Open Forum Infect Dis ; 8(10): ofab465, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1526182

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccine trials and post-implementation data suggest that vaccination decreases infections. We examine vaccination's impact on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case rates and viral diversity among health care workers (HCWs) during a high community prevalence period. METHODS: In this prospective cohort study, HCW received 2 doses of BNT162b2 or mRNA-1273. We included confirmed cases among HCWs from 9 December 2020 to 23 February 2021. Weekly SARS-CoV-2 rates per 100,000 person-days and by time from first injection (1-14 and ≥15 days) were compared with surrounding community rates. Viral genomes were sequenced. RESULTS: SARS-CoV-2 cases occurred in 1.4% (96/7109) of HCWs given at least a first dose and 0.3% (17/5913) of HCWs given both vaccine doses. Adjusted rate ratios (95% confidence intervals) were 0.73 (.53-1.00) 1-14 days and 0.18 (.10-.32) ≥15 days from first dose. HCW ≥15 days from initial dose compared to 1-14 days were more often older (46 vs 38 years, P = .007), Latinx (10% vs 8%, P = .03), and asymptomatic (48% vs 11%, P = .0002). SARS-CoV-2 rates among HCWs fell below the surrounding community, an 18% vs 11% weekly decrease, respectively (P = .14). Comparison of 50 genomes from post-first dose cases did not indicate selection pressure toward known spike antibody escape mutations. CONCLUSIONS: Our results indicate an early positive impact of vaccines on SARS-CoV-2 case rates. Post-vaccination isolates did not show unusual genetic diversity or selection for mutations of concern.

19.
Cell ; 184(26): 6229-6242.e18, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1520753

ABSTRACT

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.


Subject(s)
COVID-19/immunology , COVID-19/transmission , Immune Evasion , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/virology , Computer Simulation , Humans , Immunity , Models, Biological , Reinfection , Vaccination
20.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750345

ABSTRACT

Non-pharmaceutical interventions (NPIs) have been crucial in curbing COVID-19 in the United States (US). Consequently, relaxing NPIs through a phased re-opening of the US amid still-high levels of COVID-19 susceptibility could lead to new epidemic waves. This calls for a COVID-19 early warning system. Here we evaluate multiple digital data streams as early warning indicators of increasing or decreasing state-level US COVID-19 activity between January and June 2020. We estimate the timing of sharp changes in each data stream using a simple Bayesian model that calculates in near real-time the probability of exponential growth or decay. Analysis of COVID-19-related activity on social network microblogs, Internet searches, point-of-care medical software, and a metapopulation mechanistic model, as well as fever anomalies captured by smart thermometer networks, shows exponential growth roughly 2-3 weeks prior to comparable growth in confirmed COVID-19 cases and 3-4 weeks prior to comparable growth in COVID-19 deaths across the US over the last 6 months. We further observe exponential decay in confirmed cases and deaths 5-6 weeks after implementation of NPIs, as measured by anonymized and aggregated human mobility data from mobile phones. Finally, we propose a combined indicator for exponential growth in multiple data streams that may aid in developing an early warning system for future COVID-19 outbreaks. These efforts represent an initial exploratory framework, and both continued study of the predictive power of digital indicators as well as further development of the statistical approach are needed.

SELECTION OF CITATIONS
SEARCH DETAIL